Télécharger le fichier pdf d’un mémoire de fin d’études
Définitions et modèle des données
Distributions de signaux
Estimation de la matrice de covariance
On remarque que les conditions M1 et M2 imposent une forme particulière sur la fonctionnelle . La condition M3 impose aussi K > M car 0 P2M (f0g) < 1 m=K. Cependant M3 est aussi une condition sur la « diversité spatiale » de l’ensemble des données secondaires. Si K = 1, M3 implique que ces données ne sont pas contenues dans un sous-espace de dimension inférieure à M (dans le cas où la matrice de covariance est de rang plein, la condition impose directement que le nombre de données K>M).
Les M-estimateurs
|
Table des matières
Introduction
1 Modélisation de bruit hétérogène et estimation de la matrice de covariance : état de l’art
1.1 Définitions et modèle des données
1.1.1 Modèle général
1.1.2 Définitions générales
1.2 Distributions de signaux
1.2.1 La distribution gaussienne
1.2.2 Les distributions complexes elliptiques symétriques (CES)
1.2.3 Le cas particulier des gaussiennes composées (CG)
1.2.4 Quelques exemples de distributions complexes elliptiques symétriques
1.3 Estimation de la matrice de covariance
1.3.1 Propriétés attendues des estimateurs
1.3.2 La Sample Covariance Matrix
1.3.3 La Normalized Sample Covariance Matrix
1.3.4 Le maximum de vraisemblance des distributions complexes elliptiques symétriques
1.3.5 Les M-estimateurs
1.3.6 Les Estimateurs Robustes Régularisés
1.4 Introduction de la problématique considérée
1.4.1 Estimation de matrice structurées
1.4.2 Matrices structurées rang faible
1.4.3 Estimation de covariance à structure rang faible : le cas gaussien
1.4.4 Estimation robuste de la matrice de covariance sous contrainte de structure rang faible : un problème ouvert
1.4.5 Estimation de la matrice de covariance en contexte hétérogène rang faible : problématique considérée dans cette thèse
1.5 Synthèse du chapitre 1
2 Estimation de la matrice de covariance en contexte hétérogène rang faible
2.1 Motivations
2.2 Modèle
2.3 Maximum de vraisemblance de la matrice de covariance du fouillis CG rang faible
2.4 Premier algorithme : 2-Step approché
2.4.1 Relaxation au travers de variables indépendantes dkr
2.4.2 Description de l’algorithme et propriétés
2.4.3 Étape 1 : Estimation des textures et valeurs propres via régularisation des EMV
2.4.4 Étape 2 : Estimation du sous-espace fouillis pour textures et valeurs propres fixées
2.4.5 Dernière étape : Estimation de facteur d’échelle
2.5 Deuxième algorithme : 2-Step exact sous hypothèse de fort rapport fouillis à bruit
2.5.1 Seconde relaxation : hypothèse de fort rapport fouillis à bruit
2.5.2 Description et propriétés de l’algorithme
2.5.3 Étape 1 : Estimation des textures et valeurs propres grâce à la relaxation fort rapport fouillis à bruit
2.5.4 Étape 2 : Estimation du sous-espace fouillis pour textures et valeurs propres fixées
2.6 Algorithmes Majorization-Minimization
2.6.1 Motivations
2.6.2 Principe général des algorithmes MM par blocs
2.6.3 Algorithme MLE-MM1 – « direct block-MM »
2.6.4 Algorithme MLE-MM2 – « Eigenspace block-MM »
2.7 Simulations
2.7.1 Paramètres
2.7.2 Estimateurs considérés
2.7.3 Résultats
2.8 Synthèse du Chapitre 2
A Preuves du chapitre 2
A.1 Preuve du Théorème 2.3.1
A.2 Preuve du Théorème 2.4.1
A.3 Preuve du Théorème 2.5.1
B Article : Développement des Algorithmes MM1 et MM2
3 Estimation de projecteur sur le sous-espace fouillis en contexte hétérogène rang faible
3.1 Motivations
3.1.1 L’approximation rang faible et ses motivations
3.2 Relaxation sur l’orthogonalité entre sous-espaces : l’heuristique LR-FPE
3.3 Relaxation sur les valeurs propres : estimateur AEMV
3.3.1 Densité de probabilité de textures connue
3.3.2 Densité de probabilité de textures inconnue
3.3.3 Interprétations de AEMV
3.4 AEMV sous hypothèse de données contaminées
3.4.1 Problème de robustesse à la contamination : un bref état de l’art
3.4.2 Estimateur AEMV modifié
3.5 Simulations
3.5.1 Paramètres
3.5.2 Résultats
3.6 Synthèse du chapitre 3
C Preuves du chapitre 3
C.1 Preuve du théorème 3.3.1
4 Application au radar STAP
4.1 Présentation du système
4.1.1 Présentation du radar
4.1.2 Modèle des signaux
4.2 Application basée sur l’estimation de la matrice de covariance : détection
4.2.1 Problème considéré
4.2.2 Résultats de Simulations
4.2.3 Résultats sur données réelles
4.3 Application basée sur l’estimation du sous-espace fouillis : filtrage rang faible
4.3.1 Problème considéré
4.3.2 Résultats de simulations
4.3.3 Résultats sur données réelles
4.4 Synthèse du chapitre 4
Conclusion et perspectives
Télécharger le rapport complet
